Skip to content

noahzhy/EdgePoint2_onnx

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EdgePoint2: Compact Descriptors for Superior Efficiency and Accuracy

EdgePoint2 is a series of lightweight keypoint detection and description neural networks specifically tailored for edge computing applications. We provide 14 sub-models with various network configurations (Tiny/Small/Medium/Large/Enormous) and compact descriptor dimensions (32/48/64) to accommodate diverse usage requirements.

Install Dependencies

pip install -r requirements.txt

Usage

To run the demo using a camera, use the following command:

python demo_seq.py camera 

Alternatively, to run with a video file, use:

python demo_seq.py PATH_TO_VIDEO_FILE

You can add --model to select the sub-model from {T32, T48, S32, S48, S64, M32, M48, M64, L32, L48, L64, E32, E48, E64}. The letter indicates the model size, while the number denotes the output descriptor dimension.

Export the model to ONNX format using the following command:

python export.py --model T32 --input_height 640 --input_width 480 --topK 2048 --output_dir ./onnx

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%